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Abstract

We investigate the spectral statistics of chaotic clean quasi one-dimensional
systems. To do so we represent the spectral correlation function R(ε) through
derivatives of a generating function and semiclassically approximate the latter
in terms of periodic orbits. In contrast to previous work we obtain both non-
oscillatory and oscillatory contributions to the correlation function. Both types
of contributions are evaluated to leading order in 1/ε for systems with and
without time-reversal invariance. Our results agree with predictions from the
nonlinear sigma model for disordered systems.

PACS numbers: 05.45.Mt, 73.21.−b, 73.20.Fz

1. Introduction

In the field of quantum chaos and disorder, the behavior of quasi one-dimensional systems
such as long wires is clearly distinguished from the behavior of ‘normal’ chaotic or disordered
systems. Most importantly, quasi one-dimensional systems display Anderson localization [1],
i.e., wavefunctions are localized in only part of the wire and the conductance is suppressed.
Anderson localization has important consequences for the statistics of energy levels [2–4]. For
normal systems the energy levels tend to repel each other; the spectral statistics is universal and
agrees with predictions made by averaging over random matrices, according to the so-called
BGS conjecture [5]. In contrast, the spectral statistics of quasi one-dimensional systems
depends on the length (and thus the diffusion time TD); in the limit of large length, the
energy levels belonging to the localized wavefunctions become independent and hence show
Poissonian statistics.

This difference between normal and quasi one-dimensional systems is well understood
for disordered systems. Notable approaches are based on the DMPK equation [6] and on
the nonlinear sigma model, a field-theoretical technique to evaluate averages over different
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realizations of the disorder potential. From the latter, localization could be extracted in
[7, 8]. The appropriate definition of quasi one-dimensional behavior arising in this context is
that the classical diffusion time TD becomes comparable to or larger than the relevant quantum
timescales, in particular the Heisenberg time TH = 2πh̄

�
, where � is the mean level spacing.

A random-matrix model for systems of this type was considered in [9–11].
For clean quasi one-dimensional systems (clean wires) the classical motion can become

chaotic due to the shape of the boundary. The effects of quasi one-dimensionality are less
well understood for such systems, and most of the literature is restricted to normal systems. A
quantity that has attracted a lot of attention in this context is the spectral correlation function
R(ε). For dynamical systems with a level density ρ(E) this correlation function is defined by

R(ε) = �2

〈
ρ

(
E +

ε�

2π

)
ρ

(
E − ε�

2π

)〉
− 1, (1)

where ε is a real energy offset, the brackets denote an average over the center energy E and
� is the mean level spacing. Random matrix theory (RMT) now makes predictions for R(ε):
for systems without time-reversal invariance an average over the Gaussian Unitary Ensemble
(GUE) of RMT gives − 1

2ε2 + cos 2ε
2ε2 , while for time-reversal invariant systems an average over

the Gaussian Orthogonal Ensemble (GOE) leads to infinite power series in 1
εn and cos 2ε

εn . The
slow (power law) decay of oscillations leads to a singularity in the Fourier transform of R(ε)

(the spectral form factor) at time t = TH .
To show that individual systems are faithful to these predictions a semiclassical approach

was proposed in [12–14]. The essential idea is to express ρ(E) as a sum over periodic orbits,
using Gutzwiller’s formula [15], and then study the interference between contributions of these
orbits. The leading non-oscillatory contribution arises from ‘diagonal’ pairs of identical (up
to time reversal) orbits [12]. The remaining terms were accessed only recently in [14, 16–18].

In this paper we want to generalize these new results to quasi one-dimensional systems.
For these systems the diagonal approximation to the small-time form factor (the Fourier image
of the non-oscillatory part of R(ε)) was evaluated by Argaman et al [19] for infinitely long
wires and by Dittrich [20] in the general case. First results on off-diagonal contributions were
obtained by Schanz and Smilansky [21] for one-dimensional quantum graphs, and by Brouwer
and Altland [22] who semiclassically explained localization for quasi one-dimensional systems
modeled by an array of quantum dots. In contrast, we will focus on general clean quasi one-
dimensional systems. We use a periodic-orbit expansion not of the correlation function itself,
but of a generating function which yields R(ε) upon taking derivatives [17, 18]. This enables
us to determine, to leading order in 1

ε
, both the non-oscillatory and the oscillatory parts of

R(ε). In this order we see that the effects of quasi one-dimensionality reduce to modification
of the periodic orbit sum rule suggested in [20]. For systems without time-reversal invariance
it suffices to perform a diagonal approximation on the level of the generating function. In
contrast, for time-reversal invariant systems this diagonal approximation still captures only the
non-oscillatory part; the evaluation of the oscillatory part involves off-diagonal contributions
of pairs of non-identical but similar orbits. Both for systems with and without time-reversal
invariance we reach agreement with results obtained by Andreev and Altshuler [4] using
the nonlinear sigma model for disordered systems. Our results illustrate how semiclassical
methods are useful not only for describing universal features of ‘normal’ systems but also
deviations from universality.

Higher order corrections in 1/ε should be similarly accessible; their calculation needs
taking into account more complicated groups of correlated orbits introduced in the previous
work on normal systems [14, 16], combined with a treatment of higher order effects of quasi
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one-dimensionality. An extension of this approach to Anderson localization appears within
reach.

2. Two-point spectral correlator and the generating function

To get started we briefly review how the correlation function R(ε) can be accessed through a
generating function. Following [17] we write R(ε) as the real part of the complex correlation
function

C(ε+) = �2

2π2

〈
Tr

(
E +

ε+�

2π
− Ĥ

)−1

Tr

(
E − ε+�

2π
− Ĥ

)−1
〉

− 1

2
,

ε± = ε ± iγ,
(2)

R(ε) = lim
γ→0

Re C(ε+)

and determine the latter from a generating function, the energy-averaged combination of four
spectral determinants

Z
(
ε+
A, ε−

B , ε+
C, ε−

D

) =
〈

det
(
E + ε+

C�

2π
− Ĥ

)
det

(
E + ε−

D�

2π
− Ĥ

)
det

(
E + ε+

A�

2π
− Ĥ

)
det

(
E + ε−

B �

2π
− Ĥ

)
〉

(3)

as

R(ε) = lim
γ→0

Re C
(
ε+) = −1

2
+ 2 Re lim

γ→0

∂2Z

∂ε+
A∂ε−

B

∣∣∣∣
‖,×

. (4)

Here the subscripts ± indicate small positive or negative imaginary parts. The symbols
‖,× denote two alternative ways of identifying the energy arguments, to be referred to as
‘columnwise’ (‖) and ‘crosswise’ (×),

‖: ε+
A = ε+

C = ε+, ε−
B = ε−

D = −ε+ columnwise, (5)

× : ε+
A = ε+, ε−

B = −ε+, ε+
C = −ε−, ε−

D = ε−, γ → +0 crosswise. (6)

Both procedures would yield the same result for the two-point correlator if implemented
rigorously. However, we shall have to calculate Z semiclassically, and that approximation
entails two different expressions, one (‖) reproducing the non-oscillatory part and the other
(×) the oscillatory part of R(ε). To obtain the full result both expressions have to be added.
In [18] it was shown that this addition can be understood naturally in terms of an improved
semiclassical approximation preserving the unitarity of the time evolution (the Riemann–Siegel
lookalike formula [23]). It is easy to show that the component of the two-point correlation
function R(ε) associated with the ‘parallel’ part of Z is identical with the straightforward
periodic orbit expansion of R(ε); it is equivalent to the semiclassical representation of the
form factor for times t < TH . On the other hand the crosswise part of the correlator is
inaccessible in the traditional approach.

The semiclassical approximation for Z is based on Gutzwiller’s formula for the trace of
the resolvent which can be written as

tr(E+ − H)−1 = − iπ

�
− i

h̄

∑
k

TkFk e
i
h̄
Sk(E

+). (7)
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The sum is taken over periodic orbits ‘k’ with periods Tk and actions Sk; Fk are their
stability coefficients incorporating the Maslov indices. Integration then yields the semiclassical
approximation of the determinant

det(E+ − Ĥ )−1 = exp

[
−

∫ E+

dE Tr(E − H)−1

]
∼ exp

[
iπE+

�
+

∑
k

Fke
i
h̄
Sk(E

+)

]
.

Substituting such expansions for all four determinants in Z and expanding, e.g., Sk(E + ε+
A) ≈

Sk(E) + Tkε
+
A, we obtain

Z ≈ e
i
2 (ε+

A−ε−
B −ε+

C+ε−
D) exp

[ ∑
k

Fk e
i
h̄
Sk(E)

(
ei Tk

TH
ε+
A − ei Tk

TH
ε+
C
)

+
∑

k

F ∗
k e− i

h̄
Sk(E)

(
e−i Tk

TH
ε−
B − e−i Tk

TH
ε−
D
)]

. (8)

3. Systems without time-reversal invariance

3.1. Diagonal approximation

The semiclassical representation (8) falls into a product over periodic orbits,

Z = e
i
2 (ε+

A−ε−
B −ε+

C+ε−
D)Z0, Z0 =

∏
k

zk,

(9)

zk = exp

⎡
⎢⎢⎣Fk

(
ei Tk

TH
ε+
A − ei Tk

TH
ε+
C
)︸ ︷︷ ︸

=f k
AC

e
i
h̄
Sk(E) + F ∗

k

(
e−i Tk

TH
ε−
B − e−i Tk

TH
ε−
D
)︸ ︷︷ ︸

=f k∗
BD

e− i
h̄
Sk(E)

⎤
⎥⎥⎦ .

The diagonal approximation [12] assumes that for systems without time-reversal invariance
contributions of different periodic orbits are uncorrelated. For the generating function this
means that the energy-averaged Z0 becomes a product of single-orbit averages,

〈Z0〉diag =
∏
k

〈zk〉. (10)

The energy average in 〈zk〉 suppresses rapid oscillations connected with the phase factors
e±iS(E)/h̄ in the exponent. Since zk is periodic in the phase 	k = Sk(E)/h̄ we may average
with respect to 	k , over a single period 2π . This yields

〈zk〉 = 1

2π

∫ 2π

0
d	 exp

(
f k

ACei	 + f k∗
BDe−i	) = I0

(
2
√

f k
ACf k∗

BD

)
, (11)

where I0 is the imaginary-argument Bessel function. The expansion ln I0 (y) = y2

4 − y4

64 + · · ·
gives 〈Z0〉 = exp

[∑
k f k

ACf k∗
BD − 1

4

∑
k

(
f k

ACf k∗
BD

)2
+ · · · ]. In the semiclassical limit

(TH → ∞) it suffices to keep only the leading quadratic term in the exponent4.
Our task is thus reduced to calculating the periodic-orbit sum

ln〈Z0〉diag =
∑

k

f k
ACf k∗

BD

=
∑

k

|Fk|2
(
ei Tk

TH
ε+
A − ei Tk

TH
ε+
C
)(

e−i Tk
TH

ε−
B − e−i Tk

TH
ε−
D
)
. (12)

4 For this term the decrease of the stability coefficients |Fk |2 with the period is just compensated by the exponential
increase in the number of orbits. For all other terms Fk decreases faster; the contributions of the long orbits then
become exponentially small, whereas the shortest orbits make for corrections of the order o(T0/TH ).
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3.2. Diffusive versus ergodic behavior

For ‘normal’ systems the sum over periodic orbits can be done using the well-known sum rule
of Hannay and Ozorio de Almeida [24]

∑
k

|Fk|2(·) =
∫ ∞

T0

dT

T
(·) (13)

which expresses the approximately ergodic behavior of long orbits; short orbits below a certain
classical period T0 have to be excluded.

The quasi one-dimensional character of long wires requires a modification of that sum
rule [20]. The momentum components in all directions and the transverse coordinates can
still effectively randomize after a few bounces against the boundary, but the longitudinal
coordinate takes much longer to explore the whole length L of the wire. Given chaos inducing
boundaries, each bounce will with finite probability change the sign of the longitudinal
momentum component and thus entail diffusion along the clean wire. The longitudinal
coordinate becomes randomized only for times long enough to explore the wire, i.e., times in
excess of the diffusion (Thouless) time TD = L2/D, where D denotes the diffusion constant.
Orbits with periods T much smaller than that Thouless time will have explored only the small
fraction

√
DT /L of the whole length, and the inverse of that fraction must be expected as a

factor of increase of the right-hand side of the above sum rule, relative to orbits with periods
T � TD .

Dittrich [20] has determined the aforementioned factor of increase for arbitrary values
of the ratio T/TD as the integral

∫ L

0 dx0p(x0, T |x0) = P(T ) of the probability density of
return to an arbitrary point x0 of departure after a time T, for a one-dimensional random walk.
Solution of the diffusion equation for a wire of length L, led to the ‘enhanced-return’ factor

P(T ) =
∞∑

n=0

exp

(
−π2n2T

2TD

)
= 1

2
[1 + ϑ3(0, e−π2T/2TD )], (14)

where ϑ3(u, q) denotes the elliptic theta-function of the third kind [25]. The sum rule modified
for quasi one-dimensional systems thus reads

∑
k

|Fk|2(·) =
∫ ∞

T0

dT

T
P (T )(·). (15)

Hannay’s and Ozorio de Almeida’s sum rule is restored if TD is so small compared with T that
only the n = 0 term in (14) survives and P(T ) ∼ 1. In the opposite limit TD � T we have
P(T ) ∼ √

TD/2πT = L/
√

2πDT which agrees with the above qualitative expectation.
Inasmuch as orbit periods of the order of the Heisenberg time TH determine the level

statistics the timescale ratio

ζ = π2TH

2TD

(16)

will play an important role for the clean wires under study here. In particular, the crossover
from normal behavior (ζ � 1) to the quasi one-dimensional behavior takes place for ζ of the
order unity; for ζ � 1 the spectral statistics must be compatible with localization.

We now invoke the modified sum rule and the identity
∫ ∞

0
dT
T

(eiaT − eibT ) = ln b
a

; the
lower limit T0 of the time integral could be replaced by zero, accepting a negligible error

5
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o(T0/TH ). We thus get the diagonal approximation for our generating function as

ln〈Z0〉diag ≈
∞∑

n=0

∫ ∞

0

dT

T
e−n2 ζT

TH

[
ei T

TH
(ε+

A−ε−
B ) − ei T

TH
(ε+

C−ε−
B )

+ ei T
TH

(ε+
C−ε−

D) − ei T
TH

(ε+
A−ε−

D)]
=

∞∑
n=0

ln

(
iζn2 + ε+

C − ε−
B

)(
iζn2 + ε+

A − ε−
D

)(
iζn2 + ε+

A − ε−
B

)(
iζn2 + ε+

C − ε−
D

) . (17)

The infinite product implicitly involved here can be brought to a closed form using
∞∏

n=0

n2 + a

n2 + b
= ϕ(a)

ϕ(b)
, ϕ(x) = √

x sinh π
√

x,

whereupon we arrive at our final result for the generating function in the diagonal
approximation,

〈Z〉diag = e
i
2 (ε+

A−ε−
B −ε+

C+ε−
D)

ϕ
( ε+

C−ε−
B

iζ

)
ϕ
( ε+

A−ε−
D

iζ

)
ϕ
( ε+

A−ε−
B

iζ

)
ϕ
( ε+

C−ε−
D

iζ

) . (18)

In the limit TD → 0 or ζ → ∞ we have ϕ(x) → πx, and the generating function tends to its
familiar form for normal systems [16].

3.3. Two-point correlator and form factor

Substituting 〈Z〉diag for 〈Z〉 in (4) and identifying energies columnwise (‖) we obtain

C‖(ε) = −2
∞∑

n=0

1

(iζn2 + 2ε)2
= − 1

2ε2

(
1

2
+

1

4
θ cot θ +

θ2

4 sin2 θ

)
, (19)

where θ ≡ (1 + i)π
√

ε
ζ

. Upon taking the real part we are led to a cumbersome expression for
R(ε) equivalent to the earlier RMT [4] and semiclassical [20] results for the non-oscillatory
part of the correlator. In the limit ζ → ∞ the GUE behavior R non-osc(ε) = −1/2ε2 is
restored.

The crosswise (×) identification of parameters, on the other hand, entails

C×(ε) = 2π2 ei2ε

εζ
[

cosh 2π
√

ε
ζ

− cos 2π
√

ε
ζ

] , (20)

and now the real part yields the oscillatory part of the correlator Rosc(ε), in agreement with
what Andreev and Altshuler [4] had found through an average over an ensemble of disordered
systems. The GUE expression Rosc(ε) = cos 2ε/2ε2 follows in the limit ζ → ∞.

For finite ζ the amplitude of oscillations of the spectral correlation function tends to zero
exponentially with ε → ∞ instead of the power-law characteristic of normal systems. That
leads to qualitative changes in the spectral form factor K(τ) where τ is the dimensionless
time, τ = t/TH . For τ > 0, the form factor can be defined as the Fourier transform,

K(τ) = 1

2π

∫ ∞+iγ

−∞+iγ
e−i2ετC(ε) dε. (21)

In normal systems without time-reversal invariance K(τ) experiences discontinuity of its first
derivative at τ = 1 introduced by the Fourier transform of the oscillatory part of the spectral
correlation function. In a quasi one-dimensional system this discontinuity is replaced by a

6
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smooth transition from the small-time to large-time behavior. Another change associated with
the non-oscillatory part of the spectral correlation function is the much faster growth of K(τ)

at small τ : the respective (parallel) part of the diagonal form factor deduced semiclassically
in [20],

K‖(τ ) = τ

∞∑
n=0

e−ζn2τ = τP (THτ), (22)

grows like a square root rather than linearly, in line with [19]. That faster rise toward the
saturation value unity may be seen as a (slightly indirect) hint to localization; in the Poissonian
limit this rise would be a jump, K(τ) = 1 for all τ > 0.

As a note of caution it has to be mentioned that, in contrast to normal systems without
time-reversal invariance, the diagonal approximation for the correlation functions no longer
coincides with the exact result in quasi one-dimensional systems. In particular, the Fourier
transform of the oscillatory part (20) is no longer zero for τ < 1 tending to a finite negative
value for τ → +0. Consequently, the total form factor of the diagonal approximation becomes
negative for small τ although the exact form factor is known to be non-negative.

4. Time-reversal invariance

Interesting changes arise if time-reversal invariance holds. Periodic orbits then exist in time-
reversed pairs (k, k̄) with exactly the same action and stability coefficients. The generating
function becomes a product of contributions of different pairs, and these pairs are uncorrelated
in the diagonal approximation. Due to zk = zk̄ the generating function is squared compared
to (18), the Weyl factor apart,

〈Z〉diag = e
i
2 (ε+

A−ε−
B −ε+

C+ε−
D)

⎡
⎣ϕ

( ε+
C−ε−

B

iζ

)
ϕ
( ε+

A−ε−
D

iζ

)
ϕ
( ε+

A−ε−
B

iζ

)
ϕ
( ε+

C−ε−
D

iζ

)
⎤
⎦2

. (23)

Using this generating function with columnwise identification of arguments we find that the
non-oscillatory part of the two-point correlation function and the small-time form factor are
doubled compared to (19) and (22); this is in line with [4, 20].

Remarkably, for time-reversal invariant systems the diagonal approximation yields no
oscillatory contributions to the correlation function, i.e., there are no terms of order cos 2ε

ε2 .
This can be understood as follows. In the crosswise limit (6) we have

ε+
C − ε−

B = ε+
A − ε−

D = i2γ, γ → 0 (24)

such that we can replace ϕ(x) → πx in the numerator of 〈Z〉diag; consequently,

〈Z〉diag ∝ (
ε+
C − ε−

B

)2(
ε+
A − ε−

D

)2
(25)

tends to zero like O(γ 4). The two derivatives w.r.t. ε+
A, ε−

B can only eliminate two factors γ .
This leaves a result that tends to zero like O(γ 2) which means that Cdiag,× = 0.

To derive the oscillatory component of the spectral correlator, we thus have to go beyond
the diagonal approximation and take into account correlations between the factors zk in the
generating function related to different periodic orbits. For the relevant correlated orbits
the differences 〈zkzl〉 − 〈zk〉〈zl〉, 〈zkzlzm〉 − 〈zk〉〈zl〉〈zm〉, etc, must be non-zero. In view of
the semiclassical limit this is possible only if the respective actions cancel up to quantities
of the order h̄, e.g., if Sk(E) ≈ Sl(E) or Sk ≈ Sl(E)+Sm(E). Such correlations between orbits
indeed exist for chaotic dynamics; they stem from ‘encounters’, i.e., places where two or more
stretches of the same orbit or of different orbits are close and almost parallel or antiparallel to

7
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each other. By changing the connections inside these encounters one can turn, e.g., an orbit
k into an orbit l with almost the same action, or split it into two orbits l and m whose sum of
actions is close to the action of k. We shall refer to such sets of correlated orbits as ‘bunches’.
The simplest encounter involves two almost antiparallel orbit stretches; the bunch it generates
is the famous Sieber–Richter pair (containing one orbit where the encounter forms a crossing
in configuration space and one where it forms an avoided crossing) [14]. More complicated
scenarios were introduced in [16, 17]. It has been shown in [17] that taking into account both
the ‘diagonal’ correlations and those related to bunches gives correct semiclassical asymptotics
of the generating function and the correlation function of normal systems. The generating
function was found as

〈Z〉 = 〈Z〉diag(1 + 〈Z〉off), (26)

where the off-diagonal part 〈Z〉off contains the contributions of the mentioned bunches.
Let us now determine the term in 〈Z〉off responsible for the leading oscillatory contribution

to the correlator. The term in question must diverge in the crosswise limit like O(γ −2)

since multiplication with this term must remove one factor ε+
C − ε−

B → i2γ and one
factor ε+

A − ε−
D → i2γ from (25). Its product with 〈Z〉diag would then be proportional to(

ε+
A − ε−

D

)(
ε+
C − ε−

B

)
and survive differentiation w.r.t. ε+

A and ε−
B and taking the limit γ → 0.

For normal systems there are three bunches which can create terms of lowest order in 1
ε

satisfying this condition (see the diagrams in column 2:2, figure 2, of the on-line version of
[17]). Two of these bunches whose existence does not demand time-reversal invariance (the
uppermost and lowest diagrams of the column 2:2) give mutually cancelling contributions.
The meaningful contribution stems from the remaining bunch consisting of two independent
Sieber–Richter pairs; its calculation gives [17]

〈Z〉off,× = − 4(
ε+
A − ε−

D

) (
ε+
C − ε−

B

) + · · · ; (27)

the omitted terms are insignificant for the evaluation of the oscillatory part of the correlator.
In a quasi one-dimensional system, due to the diffusive dynamics, equation (27) would be

replaced by an expression analogous to the diagonal approximation (17), i.e., a summand (27)
as in a normal system, plus terms where the energy differences are shifted by finite imaginary
amounts of the type iζn2, n = 1, . . . ,∞. However, the shifted terms would no longer diverge
in the limit (×) and, combined with 〈Z〉diag, yield vanishing contributions to the correlation
function. Therefore the leading term in C×(ε) is still due to (27). Substituting (27) into (26)
and calculating derivatives in the crosswise procedure, we obtain the oscillatory component
of the complex correlator,

lim
γ→+0

C×(ε) = 8π4ei2ε

ε2ζ 2
(
cosh 2π

√
ε
ζ

− cos 2π
√

ε
ζ

)2
. (28)

Its real part coincides with the RMT result for the two-point spectral correlation function
in the presence of time-reversal invariance [4], now deduced semiclassically for individual
chaotic quasi one-dimensional systems. In the normal-system limit ζ → ∞ (28) tends to the
random-matrix expression exp(i2ε)/2ε4. On the other hand, for all finite ζ the amplitude of
oscillations diminishes exponentially with the growth of ε. As a consequence the discontinuity
at τ = 1 of the third derivative of the GOE spectral form factor K(τ) [10] is smoothed out in
the quasi one-dimensional case.
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5. Conclusion

We considered spectral correlations in fully chaotic clean quasi one-dimensional systems. Our
main result was the semiclassical evaluation of the oscillatory part of the two-point correlation
function which turned out to agree with predictions from the theory of disordered systems. To
obtain this result we represented the correlation function through derivatives of a generating
function involving four spectral determinants, and approximated the latter using periodic
orbits. We limited ourselves to the leading terms in the 1/ε-expansion of the correlator.

The necessary level of approximation depended on the universality class of the system.
The diagonal approximation for the generating function was sufficient in the absence of
time-reversal invariance. On the other hand, for time-reversal invariant systems the diagonal
approximation gave only a trivial (zero) result for the oscillatory part of the correlator. The
oscillatory contribution was thus purely off-diagonal; it was related to orbits differing from
each other only inside close encounters in phase space.

The changes of the leading order results compared to normal system could be attributed
to a modification of the Hannay–Ozorio-de-Almeida sum rule in the presence of diffusion;
this was true for both universality classes considered. If we go for the higher order terms this
simplicity of the physical picture will disappear; new rules will have to be worked out for the
contributions of the orbit bunches. This is a challenging problem whose study may contribute
to the semiclassical interpretation of the localization phenomena in clean systems.
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